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Introduction 
 

An aluminum electrolytic cell contains two overlying fluid layers of 
small density difference and large horizontal extent relative to their 
depth. The interface waves are similar to stratified sea layers, but the 
situation is complicated by the passage of electric current exceeding in 
modern cells a magnitude of 200,000 A. The interface waves change 
electric current distribution in accordance to depth variation of poorly 
conducting electrolyte what produces high density horizontal currents in 
the relatively thin and well conducting liquid aluminium. The wave 
development depends on the magnetic field distribution created by the 
current supplying busbars and by the current in the cell. The interface 
stability problem is of great practical importance because the electrolytic 
aluminium production is a major electrical energy consumer, and it is 
related to environmental pollution rate. 

Urata et al.1 were the first to introduce a coupled wave equation to 
describe the interface evolution in electrolysis cells. In their model the 
electric current is coupled to the interface deformation. In Ref.2 a 
systematic perturbation expansion is developed for the fluid dynamics 
and electric current problems which permitted to reduce the three-
dimensional problem to a two-dimensional one for the leading order 
expansion terms.  

The procedure is more generally known as “shallow water 
approximation”  which can be extended for the case of weakly non-linear 
and dispersive waves. Generalised KdV equation was derived by 
Hofman3 for small finite amplitude gravity waves in the presence of 
magnetic field. Oshima and Yamane4 applied numerical analysis of the 
generalised Boussineq equations to investigate unidirectional 
propagation of a solitary wave and a hydraulic bore, and obtained 
qualitative agreement to their experimental results. The Boussinesq 
formulation permits to generalise problem for non-unidirectionally 
propagating waves, accounting for side walls and for a two fluid layer 
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interface, e.g., Renouard et al.5 found a good correspondence to the 
experimental results for resonantly interacting waves in a channel 
mounted on a rotating platform. 

In the present work shallow layer generalised Boussinesq equations 
are derived for wave motions depending on two horizontal variables x,y 
for two layers and with the electromagnetic interaction which makes the 
flow velocities rotational. Thus the velocity potential alone will not be 
adequate for the flow representation. The mathematical problem is put in 
“weak”  formulation and coupled equations in Fourier space are derived. 
The solution method is a discrete time stepping where the full non-linear 
problem is linearized within each small time step and the resulting 
eigenvalue/eigenvector problem solved numerically by high accuracy 
LAPACK routines. The procedure can be considered as an extension of 
the linear stability problem. The simulated wave behavior will be 
validated against the one-dimensional finite amplitude standing wave 
analytical solutions by Tadjbakhsh and Keller6. Different magnetically 
modified wave patterns will be presented graphically. 
 
 
 

Statement of the problem 
 

     An idealised electrolysis cell can be represented by three layers 
shown in Fig.1 where the top layer (3) is solid carbon anode, (2) - liquid 
electrolyte of density ρ2=2.1⋅103 kg/m3  and  (3) molten aluminium - 
ρ1=2.3⋅103 kg/m3 . The horizontal dimensions Lx  and Ly  are assumed to 
be much larger than the typical depth H and the interface wave typical 
amplitude A is assumed to be small relative to the depth. Thus two small 
parameters of the problem are 
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and they are assumed to be related as  ε δ= O( )2 . 

With the purpose to derive weakly nonlinear shallow layer 
approximation Boussinesq equations we will need to estimate the terms in 
the full equations of motion. Therefore, nondimensional variables are 
introduced using the following scales:  L for coordinates x,y; ε gH  for 

velocity v, L gH/  for time t, ρ1 gH  for pressure p, IB L0
2/  for 

electromagnetic force f ( B0 is typical magnetic field magnitude and I - total 
electric current). According to the small depth assumption a stretched 
nondimensional coordinate z z L= / ( )δ  is defined, and the nondimensional 

interface deformation is represented as h x y to = ε ς ( , , ) . With these 
definitions the nondimensional fluid flow equations: continuity, horizontal 
momentum and vertical momentum transport, are respectively, 
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Fig. 1  Idealized electrolysis cell. 
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where Einstein summation convention is assumed over the repeating j 
and k indexes (equal to 1 or 2, respectively for x,y coordinates) is used, 
and the nondimensional governing parameters are Reynolds number: 

Re =
L gHε

ν
 and electromagnetic interaction parameter: E

IB

L g
o= 2ρ εδ

. 

Formally the Boussinesq equations can be derived if assuming 
Re ( ) ( )− − = =1 2 1 1εδ O and E O , and the leading terms of velocity 
expansion in the small depth parameter being given by 
 

u u u( , , , ) ( , , ) ( , , , ) ( )x y z t x y t x y z t oo= + +δ δδ .                        (4) 
  

The continuity equation (1) shows that the vertical velocity expansion starts 
with the second term only: 
 

w x y z t w o( , , , ) ( )= +δ δδ .                                      (5) 
   

Depth averaged quantities are introduced according to the definition: 
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The same depth averaging procedure is formally applied to the fluid flow 
equations. With the kinematic boundary condition at the interface: 
 

w h u ho t k o k( ) ( )= +δ∂ ς εδ ∂ ς                                      (7) 
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the depth averaged continuity equation for each of two fluid layers with 
the variable depths h x y ti ( , , ) is 
 

∂ ς ∂ εςt j i jh u= −( ) ∃ ,                                            (8) 

 
which is accurate to all orders in ε δ   and .  
   The depth averaged horizontal momentum equations for each of the fluid 
layers are 
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where the continuity of the pressure at the interface is satisfied by 
introducing P(x,y,t) - the pressure at the interface common to both layers. 
The linear friction law is introduced in (9): 
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which was used previously for shallow water identifications both for sea 
tide simulations7 and aluminium electrolysis problems8. The appropriate 
boundary conditions to solve the equations (8),(9) are zero normal 
velocity at the side walls: 
 

un = 0 .                                                      (11) 
 

The momentum (9) and continuity (8) equations for the two fluid layers 
can be combined in one nonlinear wave equation for the interface: 
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where F F F= −1 2  denotes a difference of quantity in the two layers. 

Note, that ∃u u0 0=  according to (4), and the equation (12) contains only 
the leading order velocities which can be determined from linear fluid 
flow equations. For this purpose these velocities are expressed as: 
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and we need to solve the following additional linear equations: 
 curl of linear momentum equation (in layer i ): 
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∂ ψ µ ∂ ψtkk i kk i z iEcurl= − + ∃f                                    (14) 
 

and linear continuity equation: 
 

∂ ς ∂ χt i kkh= .                                             (15) 
 

The coupled electromagnetic force is expressed similar as in Ref.2  
The horizontal electromagnetic force appearing in (12) and (14) is given 
by 
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The equation for the electric potential Φ(x,y,t) in the aluminium is2 
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where s O= =−σ
σ

δ2

1

2 1( ),  electrical conductivities for liquid aluminium 

being σ1=3.3⋅106  and for liquid electrolyte -  σ2=2⋅102 Ω -1 m-1 . The 
nonconducting side walls of the electrolysis cell mean the boundary 
condition: 
 

∂nΦ = 0 .                                               (18) 
 
     

 
 

Solution and Results 
 
The coupled equations of the problem (11)-(18) are put in a weak form 
by integrating against sufficiently regular functions over the cell and 
accounting for the boundary conditions. The solutions of the problem 
can be expressed in the form: 
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01 ; and similar 

expressions for other unknowns ψ, χ, Φ.  
The problem is homogenous what results in a nonlinear eigenvalue 

problem for ωj . For linear problem, ε = 0 ,  it is possible to solve the 
homogenous problem for the eigenvalues and eigenvectors. Then the 
evolution problem with initial conditions is solved by double summing 
up all eigenvectors for all the respective eigenvalues. The same method 
can be applied to the nonlinear problem, when ε ≠ 0 , performing a 
linearization over a small time interval ∆t  and computing the linear 
velocity components from the previous time step. The end of previous 
time step gives new initial conditions for the new linearized problem. At 
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the each time step the computed eigenvectors need to be normalized 
according to these initial conditions. Accurate routines for these linear 
algebra tasks are supplied in the LAPACK program package. Typical 
runs were made with 16*16 modes in the horizontal directions, and the 
time steps up to 2.5 seconds were accessible.  

Significant efforts were done to validate the problem final 
formulation and the numerical simulation program against the previously 
published results. The simple analytical case for two mode, (0,1) and 
(1,0), interaction, when 
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permits to recover the previous linear theory2 ( ε δ µ= = =0 0 0, , ) result 
for the critical uniform vertical magnetic field magnitude: 
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In particular, the square cell case L Lx y=  is always unstable if the 

friction coefficient µ = 0 . This is the simplest case of the so called 
rotating wave instability. The present theory permits to show that the 
instability holds even for the dispersive case with finite δ ≠ 0 . However, 
for  
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this simplest case becomes stable. 
 
 

 
Fig. 2  Wave profile at t=0. 
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Fig. 3  Wave profile at t = 920 s, m = 4. 
 

 
 
Another checks were made against the analytical results6 for a pure 

hydrodynamic standing wave in the weakly nonlinear case. If started 
from a (1,0) one dimensional gravity wave (Fig.2), the evolving wave is 
loosing its cosine profile in space and time, and finally the profile 
maximum elevation is not equal the minimum depression (Fig.3). The 
present simulation profile is the same as the analytical result6 for m=4. 
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Fig. 4  Wave profile at t = 920 s, m = 8. 
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The present numerical method permits to increase number of modes, 
thus Fig.4 shows the profile for m=8 which is different from the 4 mode 
case. The result was checked increasing still more the number of modes, 
the Fig.5 shows computed profile for m=64, which is the same as for 
m=8. 
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Fig. 5  Wave profile at t = 920 s, m = 64. 

 
 

 
A hydrodynamic solitary wave was attempted to simulate 

numerically starting with a step like perturbation. It was found that for 
the considered two fluid particular case the dispersive effects were much 
stronger expressed than the nonlinear. Therefore a single fluid case 
(ρ2=0) was considered for the following test exercise. The Fig. 6 shows 
the initial pulse resulting after Fourier  
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Fig. 6  Wave profile, initial pulse. 
 
 
 
 
representation was applied to the step like perturbation. This pulse 
travels the channel length (L=10 m) many times with reflections, the 
typical period being approximately 30 seconds. Fig. 7 shows the profile 
at 1200 seconds. 
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Fig. 7  Wave profile, linear pulse. 
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Fig. 8  Wave profile, nonlinear pulse. 

 
 
 
 
The nonlinear wave without dispersion (δ=0) shows a steep front profile 
(Fig.8). Yet pure dispersive pulse exhibits a typical dispersive tail shown 
in Fig.9. Finally the dispersive nonlinear wave is shown in Fig. 10. 
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Fig. 9  Wave profile, dispersive pulse. 
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Fig. 10  Wave profile, nonlinear dispersive pulse. 
 
 
 

 
In the case of applied uniform vertical magnetic field the 

numerically simulated solitary wave initially starts to bounce from one 
side to other (Fig.11), and at longer times establishes a quasistationary 
pattern which is totally different from the nonmagnetic case. For a 
typical electrolysis cell situation this is shown in Fig.12. It is remarkable, 
that this result is not dependent on the initial conditions. Starting from a 
depression perturbation, the initial traveling wave is shown in Fig. 13, 
yet the long time behavior, shown in Fig. 14, is quite similar to the 
previous case (compare Fig. 12). However, we need to note that the 
particular wave patterns evolving from the electromagnetic interaction 
depend on the cell geometrical and material parameters, and on the 
magnetic field distribution which is affected by the current supply and 
removal at the cell. 
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Fig. 11   Initial propagation of the step perturbation 
              Lx=9.8 m, Ly=3.2 m, Bz=0.003 T, I=160000 A. 
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Fig. 12    Established oscillations (from initial step perturbation) 
               Lx=9.8 m, Ly=3.2 m, Bz=0.003 T, I=160000 A. 
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                                                                                             t=0 s 
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Fig. 13   Initial propagation of the depression at two fluid interface 
              Lx=9.8 m, Ly=3.2 m, Bz=0.003 T, I=160000 A. 
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t=355s 
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Fig. 14   Established oscillations (from initial depression perturbation) 
              Lx=9.8 m, Ly=3.2 m, Bz=0.003 T, I=160000 A. 
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